Dynamic Model of Lithospheric drip Magmatism in western arm of EARS and its Implication for Geothermal Occurrences

Dr. Wendy R. Nelson
Towson University

collaborators
Dr. Tanya Furman & Dr. Lindy Elkins-Tanton

Research accepted for publication in Geochimica et Cosmochimica Acta (Furman et al. 2016)
East African Rift System - Today

- Eastern “Kenya” Rift (Tanzania)
- Main Ethiopian Rift valley floor
- Oldoinyo Lengai (Tanzania)
East African Rift System - Today

Nyiragongo Volcano (D.R.C.)

Ertā ‘Ale Volcano (Eritrea)
Mantle Plumes and EARS volcanism

- Plume models vary
 - One “runny” plume (Ebinger & Sleep, 1998)
 - Two completely separate plumes – one with a HIMU signature (e.g. George et al., 1998)
 - Two shallow plumes the merge into one plume with depth (e.g. Furman et al., 2006)
Plume Mantle Fingerprinting: $^3\text{He}/^4\text{He}$

- **Afar Plume:**
 - $^3\text{He}/^4\text{He} > 9\text{Ra}$
 - Up to 19.6Ra
 - Note: Baffin Island max = 49.5Ra (Stuart et al 2003)

- **Depleted MORB Mantle**
 - $8 \pm 1\text{Ra}$

- **Subcontinental Lithospheric Mantle**
 - 5-7Ra
Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: Implications for the origin of Cenozoic Afro-Arabian tectonism

Samantha E. Hansen a,*, Andrew A. Nyblade b, Margaret H. Benoit c

a Geological Sciences Department, University of Alabama, Tuscaloosa, AL 35487, USA
b Geosciences Department, Pennsylvania State University, University Park, PA 16802, USA
c Physics Department, The College of New Jersey, Ewing, NJ 08628, USA
“Flavors” of Volcanism

- Highly sodic volcanism
- Alkaline to Highly potassic volcanism
- Transitional to Alkaline lavas
Classic Mechanisms for Melt Generation

Bastow et al. (2011)
Geochemical Conundrums

- 30 Ma high-Ti “Mantle Plume” flood basalts and picrites
 - Why do they record radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ (~0.704)?

![Geochemical Diagram]

Western Branch Technical Workshop

Kigali, Rwanda. March 10, 2016
Geochemical Conundrums

- 30 Ma high-Ti “Mantle Plume” flood basalts and picrites
 - Why do they record radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ (~0.704)?
 - Why are there significant K_2O depletions and TiO_2-enrichments?

(Pik et al. 1998)
Geochemical Conundrums

- 30 Ma high-Ti “Mantle Plume” flood basalts and picrites
 - Why do they record radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ (~0.704)?
 - Why are there significant K_2O depletions and TiO$_2$-enrichments?
 - Why are lithospheric mantle $^{187}\text{Os}/^{188}\text{Os}$ isotopes similar to flood basalt values?

<table>
<thead>
<tr>
<th>187Os/188Os</th>
<th>Basalts: 0.1247-0.1323</th>
<th>Xenoliths: 0.1261-0.1295</th>
</tr>
</thead>
</table>

(Rogers et al., 2010; Nelson et al., 2012; Nelson, unpublished data)
Geochemical Conundrums

- 30 Ma high-Ti “Mantle Plume” flood basalts and picrites
 - Why do they record radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ (~0.704)?
 - Why are there significant K_2O depletions and TiO_2-enrichments?
 - Why are the $^{187}\text{Os}/^{188}\text{Os}$ isotopes mildly unradiogenic, similar lithospheric peridotite xenoliths in the region?

- 26-20 Ma pre-rifting volcanism
 - Why does is there a widespread have a HIMU-flavor (elevated $^{206}\text{Pb}/^{208}\text{Pb}$) that is absent in younger volcanism?
Additional Mechanism for Melt Generation

Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities
Linda T. Elkins-Tanton1,2

Mantle melting beneath the Tibetan Plateau: Experimental constraints on ultrapotassic magmatism
Eva S. Holbig1,2 and Timothy L. Grove1

Mantle-drip magmatism beneath the Altiplano-Puna plateau, central Andes
M.N. Ducea1,2, A.C. Seclaman1,2, K.E. Murray2, D. Jianu1, and L.M. Schoenbohm2

1Universitatea București, Facultatea de Geologie-Geofizica, Bucharest 010041, Romania
2University of Arizona, Department of Geosciences, Tucson, Arizona 85721, USA
3University of Toronto, Department of Geology, Toronto, ON M5S 3B1, Canada

Geology, 2013 v. 41, 915-918

Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling
A. Levander1, B. Schmandt2, M. S. Miller3, K. Liu1, K. E. Karlstrom4, R. S. Crow4, C.-T. A. Lee1 & E. D. Humphreys2

LETTER

doi:10.1038/nature10001
Drip vs. Adiabatic Melting

HOLBIG AND GROVE: TIBETAN PLATEAU MANTLE MELTING

JGR, 2008 v. 114, B04210
Why Would Lithosphere Drip?

- Dry, peridotitic continental lithosphere is
 - Rigid
 - Stable

- Metasomatizing the mantle changes stability.
 - Reintroduce fluids (e.g. phlogopite, amphibole, carbonate).
 - Alter mineralogy to highly fusible minerals (e.g. pyroxene).
 - Pyroxene-rich (pyroxenite) lithologies are more dense than peridotite lithologies.
 - New mineralogy is more ductile.
Lithospheric Drip Melting

- Lithosphere
- Convecting Asthenosphere
- Metasomatized "dense" lithosphere
Lithospheric Drip Melting

- Dominated by pyroxenite melt

Increasing heat with depth \rightarrow melting pyroxenitic material
Lithospheric Drip Melting

- Dominated by pyroxenite melt
 - Adiabatic
 - Flux Melting

- Dominated by peridotite melt
 - Adiabatic
 - Flux Melting

Peridotite “fills in” space left by drip, allowing peridotite to melt adiabatically.

Devolatilization of descending drip can flux-melt surrounding peridotite.
Lithospheric Drip Melting

- Dominated by pyroxenite melt
- Dominated by peridotite melt
 - Adiabatic
 - Hydration
- Combination of both – pyroxenite then peridotite
Pan-Africa: 900-500 Ma

Modified after Stern (2002) and Küster & Harms (2011)
Drip Magmatism: Geochemical Test

(Furman et al, accepted)
30 Ma Flood Basalts
30Ma Flood Basalts

Furman et al. *accepted* (GCA)
(Data sources: Pik et al., 1998; Beccaluva et al., 2009)
26-16 Ma Mafic Lavas
26-16 Ma Mafic Lavas

Furman et al. *accepted* (GCA)
(Data sources: Furman et al. 2006; George & Rogers, 2002; Kieffer et al., 2004)
< 10 Ma Mafic Lavas
< 10Ma Mafic Lavas

Furman et al. *accepted* (GCA)
What is melting?

![Graph showing the relationship between Mn/Zn and 1000*Zn/Fe for different samples labeled as HT2, HT1, and LT, with two regions labeled as Pyroxenite and Peridotite.]

Furman et al. *accepted* (GCA)
What is melting?

Furman et al. *accepted* (GCA)
What is melting?

Furman et al. *accepted* (GCA)
Lithospheric Drip Magmatism: Flood Basalts

Future Afar Margin
ETHIOPIA ← YEMEN

LT HT-1 HT-2 HT-1

Asthenosphere

Lithosphere

Crust

Plume-metasomatized mantle; generates low-Ti (LT) basalts

Plume-metasomatized mantle; generates high-Ti (HT) basalts, some with amphibole

Furman et al. accepted (GCA)
Drip Melting and the Western Rift

- If lithospheric drip melting is a processes that occurs across the EARS,
 - What are the implications for magma production?
 - How does this affect the formation of crust-level magma chambers necessary for productive geothermal reservoirs?
Western Rift – New Localities

Bufumbira & Virunga

Katwe-Kikorongo
Western Rift – New Localities

Virunga, Bufumbira, and Katwe Kikorongo lavas

Normative olivine (%) vs. Cr ppm

(Pitcavage et al., 2015)
Lithospheric Foundering and Magma Production

- Lithospheric drip magmatism
 - Is finite
 - Is low volume
 - Is limited to the size and speed of descending lithosphere
 - Can be a mixture of peridotite and pyroxenite end members, which will affect
 - Major element compositions
 - Isotopic ratios
Depth of Melting

(Rosenthal et al, 2009)
Summary

- Lithospheric drip melting may play an important role in localized magma production.
- Evidence for lithospheric drip is found in:
 - Oligocene high-Ti (HT2) flood basalts
 - Miocene and Quaternary Turkana basalts
 - Quaternary Chyulu Hills
 - Eastern Virunga, Bufumbira, and Katwe-Kikorongo
- Little to no evidence for drip magmatism in Kivu and Rungwe
- The low-volume, highly alkaline magmas are not likely to stall in the crust and, therefore, are unlikely to form long-lived magma chambers.