Wellhead power plants

Elín Hallgrímsdóttir
Yngvi Guðmundsson
4th November 2016
Installed and predicted future power generation

Geothermal power generation, updated report 2015, Bertani
Small 0-15 MW plants from 1980-2016

Reference list from manufacturer, single flash.
Wellhead power plants

Purpose

Permanent plants
- Long term utilization
- Optimally utilize the resource

Temporary plants
- Early generation
- Standard plants
- Information gathering
Wellhead power plants

Temporary
• Pros
 – Early generation
 – Continuous well testing
 – Small units, standard
• Cons
 – Grid connection
 – Decline
 – Relocation
 – Distributed operation

Permanent
• Pros
 – “Early” generation
 – Continuous well testing
 – Small units, customized
• Cons
 – Grid connection
 – Make-up drilling/decline
 – Distributed operation
 – Spare parts
Feasibility

- Cost
 - Well cost
 - Re-injection
 - Equipment
 - Grid connection
 - Capacity factor
 - Relocation (for temporary)
 - Make up wells (for permanent)
- Feed-in tariff
- Depreciation period
- Well characteristics
Technology

• Backpressure
 – Topping plants, temporary plants
 – Lowest capital cost
 – Lowest efficiency

• Condensing
 – Permanent plants
 – Higher capital cost
 – Higher efficiency

• Binary
 – Bottoming plants, permanent plants
 – Highest capital cost
 – Higher efficiency
Environmental impact

- Gas emissions
- Noise
- Grid connections
Efficiency comparison, single flash

![Graph showing steam rate vs. turbine inlet pressure for 5 MW wellhead and large centralized plant.](graph.png)
Pressure selection
Comparison

Conventional

Pros
- High efficiency
- Geothermal fluid mixing
- Simpler operations

Cons
- Single operating condition in the steam supply system
- Long lead times for large scale equipment
- Cross-country piping

Wellhead power plants

Pros
- Early generation
- Reservoir production response information
- Simple construction
- Relocation option

Cons
- Distributed operation
- Make-up wells
- Grid Connection
- Reinjection
Cost comparison

• Single flash condensing plant cost – excl. Wells
 – (50 MW, 6-16 bara, 1-2% NCG)
 – Large scale: 1,8 – 2,5 MUSD/MW
 – Well head: 1,75 – 2,4 MUSD/MW
 – Mostly the same or even cheaper!

• When wells are included, Large scale become cheaper because of higher efficiency
Conclusion

- Selection between one or the other does not seem obvious
- Well head power plants along side large scale plant most likely scenario for field development
- Combining the best of both by using a combination of both
- Temporary well head for early generation
- Permanent well head for “off design” wells and surplus steam
- Well head plant can be the key to project feasibility with early generation
Thank you