THE SEARCH FOR VOLCANIC HEAT SOURCES IN TANZANIA:
A HELIUM ISOTOPE PERSPECTIVE

by Kraml, M., Kaudse, T., Aeschbach, W. & Tanzanian Exploration Team
Outline

Hydrochemistry:
- Sampled sites in northern Tanzania
- Source of salinity (I and II)
- Solute geothermometers (I and II)
- Fluid evolution (I and II)

Isotope Geochemistry:
- Water isotopic composition
- Gas composition
 - Carbon and hydrogen isotope composition of methane
 - Carbon isotope composition of carbon-dioxide
- Noble gases
 - Helium isotope composition of fumaroles and springs
 - Helium isotope composition of Lake Tanganyika
 - Helium isotopes as low-budget exploration tool
- Conceptual Model

Conclusions / Recommendations
Sampled sites in northern Tanzania

Source: www.gmis-tanzania.com, modified
Source of salinity

Source: data (yellow squares) this study; data basement samples (brown dots, e.g. Canadian and Scandinavian Shield) and dissolved salts Bucher & Stober (2010 and references therein)
Source of salinity

Source: data (yellow symbols) this study; data Mananka spring James (1957)
Solute Geothermometers

Source: data (yellow symbols) this study; data Mananka spring James (1957)
Solute Geothermometers

Source: data (yellow symbols) this study; data Mananka spring James (1957)
Fluid evolution

Source: data (yellow symbols) this study; data Mananka spring James (1957); data L. Manyara water Talling & Talling (1965), Melack and Kilham (1974)

Source composition of foidite, sand, phonolite: May (2005)
Fluid evolution

Source: data (yellow symbols) this study; data Mananka spring James (1957)
Source of encircled water types: Vaselli et al. (2002)
Water isotopic composition

Source of map: IAEA (2007, modified)

Source of data: IAEA (2007) and this study
Gas composition

Source of diagram (a): Fischer et al. (2009)

Source of data (b): Walker (1969) and this study; diagram after Giggenbach et al. (1983)

Uv = Uvinza; Ite = Itebu; Kon = Kondoa; Mt = Mtagata

N₂ 84.3%
He 12.0%
Ar 1.9%
CH₄ 1.6%
CO₂ 0.2%

δ¹³Cₐₕ₄ₐ₉₉ -14.9‰
(C₄ plants)
Carbon and hydrogen isotope composition of methane

(a) Bernard diagram, modified after Whiticar et al. (1986)

(b) Updated Schoell diagram after Etiope & Sherwood Lollar (2013)

Source of data (a) and (b): Botz & Stoffers (1993; blue symbols) and this study (yellow symbols)

\[M = \text{microbial}; \quad T = \text{thermogenic}; \quad A = \text{abiotic}; \]

\[\text{MCR = microbial carbonate reduction; MAF = microbial acetate fermentation; ME = microbial in evaporitic environment; TO = thermogenic with oil; TC = thermogenic with gas-condensate; TD = dry thermogenic; TH = thermogenic with high-temperature CO2-CH4 equilibration; TLM thermogenic low maturity} \]
Lake Manyara carbon isotope composition

$\delta^{13}C$ of CO$_2$ = -11 to -12‰ (C4 plants)

Source: Casanova & Hillaire-Marcel 1992
Helium isotope composition of fumaroles and springs

Data sources: this study, Pik et al. 2006; Kraml et al. 2014a; Barry et al. 2013; Fischer et al. 2009;
Helium isotope composition of Lake Tanganyika

Source (a): Pflumio et al. (1994) and Coussement et al. (1994) modified

Source (b): Craig (1974)

\[R/R_a = 0.28 \]
Helium isotopes as low-budget exploration tool

Conceptual model for fault controlled basement systems

Source of geological section: Macgregor (2015), modified
Conclusions / Recommendations

Hydrochemistry:
- Bromide analyses should be done to assess the source of salinity of basement brines.
- Most solute geothermometers of subduction zone environment cannot reliably be applied in rift environments (compare e.g. Marini & Pasqua 2014). Different reservoir rocks and fluid evolution should be considered and alternative geothermometers have to be established.

Isotope Geochemistry:
- The major gas and carbon isotopic composition of CO\textsubscript{2} gives a first indication on a possible magmatic origin of the gas, but due to various and abundant fractionation affects, noble gas isotope analyses should confirm those preliminary findings. He isotopes can be used as low-budget geothermal exploration tool prior to geophysics.

Overall Conclusions:
- Mount Meru, which might host a volcanically heated viable high-temperature geothermal system, should be explored to close the data gap.
- The same holds true for the Pemba site which might indicate a volcanically heated system hopefully continuing into Tanzanian territory (as well as Kalemie-Mahali-Ridge of Lake T.).
- Also numerous low-temperature resources can contribute to Tanzanian energy supply by delivering sustainable power with high supply security in rural and touristic areas.
Thank you for your attention!

GeoThermal Engineering GmbH

Your contact for East Africa:
Dr Michael Kraml
(Senior Geologist / Geochemist)
Fon: +49 721 570 446 84
Email: kraml@geo-t.de